Course Overview
This Data Science Course provides you the analytical skills you need to open the door to a new career as a Data Scientist. Data modeling has become a pervasive need in today's business environment. Often the quantity of data you would need to process goes beyond the capabilities of spreadsheet modeling. As a result of this, the statistical programing language R offers a strong alternative.
No programming experience is required for this course. The course is targeted at beginners who want to find out the way to import, clean, manipulate, visualize and analyze data in R. After this course, you'll be able to analyse data by yourself and gain insights from data using statistical techniques.
Requirements
- This course does not require sophisticated Statistical or Mathematical knowledge
- No programming experience is required for this course
Topics Covered
Module 1: Getting Started with R
- R Overview
- Vectors in R
- Lists in R
- Matrices in R
- Subsetting in R
- Packages in R
Module 2: Exploratory Data Analysis
- Importing Data into R
- Data Manipulation with Tidyr
- Data Transformation with Dplyr
- Univariate Analysis
- Bivariate Analysis
Module 3: Hypothesis Testing
- One sample T-Test
- Two Sample T-Test
- Contigency Test
Module 4: Linear Regression
- Introduction to Linear Models
- Assumptions of Linear Regression
- Simple Linear regression
- Multiple Linear Regression
- Application of Linear Regression
Module 5: Logistic Regression
- Introduction to Logistic Regression
- Odds and Odd Ratio
- Application of Logistic Regression
Who Should Take this Course?
- Anyone who aspires to work in a data-centric field such as: Data Science, Data Engineering, Data Analytics, Business Analytics, etc..